
Network Coding Based Multipath TCP
Ming Li∗, Andrey Lukyanenko∗, Yong Cui†

∗Department of Computer Science and Engineering, Aalto University, Finland
Email: {∗ming.li, ∗andrey.lukyanenko}@aalto.fi

†Department of Computer Science and Technology, Tsinghua Unversity, China
Email: †cuiyong@tsinghua.edu.cn

Abstract—Multipath TCP (MPTCP) suffers from the degra-
dation of goodput in the presence of diverse network conditions
on the available subflows. The goodput can even be worse than
that of one regular TCP, undermining the advantage gained by
using multipath transfer.

In this work, we propose a new multipath TCP protocol,
namely NC-MPTCP, which introduces network coding (NC) to
some but not all subflows traveling from source to destination.
At the core of our scheme is the mixed use of regular and NC
subflows. Thus, the regular subflows deliver original data while
the NC subflows deliver linear combinations of the original data.
The idea is to take advantage of the redundant NC data to
compensate for the lost or delayed data in order to avoid receive
buffer becoming full. We design a packet scheduling algorithm
and a redundancy estimation algorithm to allocate data among
different subflows in order to optimize the overall goodput. We
also give a guideline on how to choose the NC subflows among the
available subflows. We evaluate the performance of NC-MPTCP
through a NS-3 network simulator. The experiments show that
NC-MPTCP achieves higher goodput compared to MPTCP in the
presence of different subflow qualities. And in the worst case, the
performance of NC-MPTCP is close to that of one regular TCP.

I. INTRODUCTION

In recent years, the emergence of multi-interface (LAN,
WiFi, 3G, WMAN, etc) devices makes ubiquitous access to the
Internet possible. Users who access to the network resources
anywhere and at any time also expect to take advantage
of these multi-homing devices to improve the end-to-end
communication performance and resilience by using several
interfaces simultaneously.

To realize this expectation, both the research community
and the Internet Engineering Task Force (IETF) have devoted
much attention to multipath transmission during recent years.
Network layer solutions such as shim6 [11] and HIP [9] have
been proposed. However, they remain mainly as proof-of-
concept implementations: to date, they have not been widely
deployed, nor are they likely to be in the near future. Transport
layer solutions have also been proposed, such as SCTP [6],
[7] and some proposals for wireless networks [3], [4], [12].
However, they cannot be deployed on the Internet in practice
due to either the compatibility or scalability issues.

During the last few years, the MPTCP (Multipath TCP) [1],
[2], [15] working group of IETF has advocated the devel-
opment of multipath extension of the traditional TCP by
enabling multihomed devices to use several paths through
multiple interfaces within a single TCP connection. From

the performance viewpoint, MPTCP aims to improve the
overall goodput by using concurrent data transmission over
multiple paths. However, if the receive buffer size is finite,
this requirement will incur a head-of-line blocking problem
at the receiver in cases when the paths have vastly different
bandwidth-delay products. Specifically, the receiver needs to
buffer connection-level out-of-order segments until the lost
or delayed segments arrive before forwarding them up to
the upper layer and then releasing the receive buffer. Once
the receive buffer becomes full because of lacking a head
segment in the receive queue, the receiver will advertise its
zero window to the sender. Therefore, the sender will enter
the persist mode resulting in great degradation of the overall
goodput. Thus, the poor quality paths may become bottlenecks
to degrade the overall performance.

Head-of-line blocking is not limited to MPTCP but is a
common problem for all multipath transfer schemes. In this
paper, we propose a network coding based multipath TCP
protocol (NC-MPTCP) to solve this problem. The main feature
of our protocol is the introduction of network coding to
some but not all subflows. The essential principle of this
scheme is the mixed use of regular subflows and NC subflows,
i.e., regular subflows transmitting original data whereas NC
subflows transmitting linear combinations of original data.
The benefit of our protocol comes from the fact that network
coding can compensate for the lost or delayed head-of-line
segments by utilizing redundant data to avoid retransmission.

A main requirement of MPTCP is that it is deployable in
the current Internet without the need for changing routers and
middle boxes. A consequence of this requirement is that the
encoding/decoding operations incurred by NC are performed
only at the end hosts. The intermediate nodes do not need to
know about NC. Our main contributions are:

• Introducing network coding into a multipath TCP to
compensate for the lost or delayed head-of-line packets
to avoid receive buffer becoming full.

• Designing an efficient packet scheduling algorithm and a
redundancy estimation algorithm.

• Showing the performance gain of the new protocol com-
pared with MPTCP over heterogeneous path conditions.

The rest of this paper is organized as follows. Section II
discusses the background and makes reference to related
work. Section III looks at the architecture of our NC-MPTCP

Global Internet Symposium 2012

978-1-4673-1017-8/12/$31.00 ©2012 IEEE 25
Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:55 UTC from IEEE Xplore. Restrictions apply.

protocol, and Section IV describes the packet scheduling
algorithm and the redundancy estimation algorithm. Section V
presents our evaluation, in which we show our implementation
and present the simulation results. Our conclusions as well as
future work are discussed in Section VI.

II. BACKGROUND AND RELATED WORK

A. Problem Statement

The initial motivation of multipath transmission is to use
multiple available paths to deliver data to destination. The
expectation is to improve the overall goodput and reliability.
However, one observation on the performance of multipath
transfer is that when the receive buffer capacity is limited,
the performance suffers from the degradation of the overall
goodput in presence of diverse network conditions on different
subflows. The overall goodput can even be worse than that
of a single TCP, undermining the advantage of multipath
transfer. The reason behind this phenomenon is the head-of-
line blocking problem, i.e., a fast path can be blocked due
to the receive buffer becoming full resulting in the overall
goodput being capped at that of the slowest subflow.

B. Multipath TCP

Multipath communication is not new. Several protocols and
their extensions have been proposed to support multipath
transportation. Stream Control Transmission Protocol (SCTP)
[13] has been designed with multi-homing support. Based on
SCTP, several extensions [6], [7] enable hosts to use con-
current multipath transfer. To solve the head-of-line blocking
problem, [6], [8] proposed several retransmission policies.
However, these policies can only mitigate the problem caused
by spurious retransmission, which is only a small part of the
cause resulting in receive buffer blocking. Furthermore, the
policies they employed did not take bandwidth and packet loss
factors into consideration. Thus, the research on the receive
buffer blocking problem based on SCTP is insufficient.

[4] proposed to allow the applications provide large ag-
gregate buffer to handle the out-of-order problem incurred by
multipath transmission. However, it did not solve the problem
itself but just moved the problem from transport layer to
application layer.

To solve the receive buffer blocking problem of multi-
path transfer in heterogeneous networks, some coding based
techniques have been proposed. [12] demonstrated that using
erasure codes can realize improved bandwidth gains through
multiple heterogeneous, highly lossy paths. [16] proposed to
use network coding techniques to minimize reordering and
timeouts at the receivers. However, these papers still lacked
in-depth analysis on the impact of receive buffer on the
performance of multipath transfer. Moreover, these coding
based solutions were designed to be used in wireless mesh
networks instead of Internet. In wireless mesh networks, much
information can be provided by utilizing the broadcast nature
of the wireless networks. For example, a node can estimate
with reasonable probability whether its neighboring nodes
have received its out-sent packets or not by overhearing the

transmission of its neighboring nodes. However, on Internet
the nodes can not get these information freely. Due to the
scalability problem, these coding based solutions cannot be
extended to be used on Internet easily.

MPTCP [1], [2], [15] has been developed to simultane-
ously transmit data over multiple subflows in a transparent
manner to application and IP layer. One objective of MPTCP
is to improve the goodput by bandwidth aggregation over
multiple available paths. This objective is still a challenge
when different paths have different characteristics in terms
of bandwidth, delay, and packet loss. [10] evaluated the
performance of MPTCP in terms of throughput optimization.
The measurements showed that the context of heterogeneous
networks (Ethernet, Wifi, and 3G) had a great impact on the
MPTCP performance due to the receive buffer blocking prob-
lem. Therefore, some intelligent packet scheduling algorithms
for interface selection in MPTCP is needed.

C. Network Coding

In traditional store and forward networks, data is transmitted
in packets and forwarded from one node to another. Contrary
to this standard network paradigm, network coding allows
nodes to encode multiple packets together to generate a new
one. Sink nodes can recover the original messages when they
collect enough linearly independent coded packets.

TCP is designed to provide a reliable, byte stream service.
To achieve this goal, TCP uses feedback to acknowledge
received segments arriving in order. The concept of sequence
order is critical for several sub functions of TCP, such as re-
ordering at the receiver and feedback signal for the congestion
control loop. When introducing network coding into MPTCP,
we face a few challenges. First, the concept of an ordered
sequence of byte stream used by TCP is missing. We need
to find a method to reorder the received segments. Secondly,
a TCP sink node may receive a linear combination of some
original segments but it cannot reveal any original segment
immediately before it accumulates enough encoded segments.
Thirdly, because the concept of sequence order is missing, a
mechanism to trigger the congestion control event is needed.

In recent years, some efforts [5], [14] have been made
to combine TCP and network coding together. [5] showed
that network coding could compensate for the lost packets
to improve the throughput. [14] demonstrated that a special
TCP implementation (TCP-Vegas) could incorporate network
coding with minor changes in the current protocol stack.
However, they all focuse on a single connection TCP. While
in this paper, our aim is to integrate network coding into
multipath TCP to boost the overall goodput.

III. ARCHITECTURE

In this section, we present the architecture of NC-MPTCP,
a new multipath TCP protocol aiming to improve the overall
goodput by mitigating the head-of-line problem with the help
of network coding techniques.

The architecture of our protocol is shown in Figure 1 where
it consists of three types of entities. The first type is Main

26
Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:55 UTC from IEEE Xplore. Restrictions apply.

Applications

Networking stack

socket

App1

main socket

NC-MPTCP Controller

regular

subsocket

regular

subsocket

network coding

subsocket

src: A1 dst: B1

sp: x dp: y

src: A1 dst: B2

sp: x1 dp: y1

src: A2 dst: B1

sp: x2 dp: y2

src: A2 dst: B2

sp: x3 dp: y3

src: A1 dst: B1

sp: x dp: y

Regular

Data

Coded

Data

Regular

Data

Regular

Data

Fig. 1. Network Coding Assisted MPTCP

������

�
�	
�

���
�
�
��
�

����
�
������

�
 �����

���� �� ��������

���
�
��������

�����

�����������

�
�

���

����

�����

�� ��������

������

���	
�������

�����
��������

�����
��������

����

�
�	
��
���
�
��
�

�
�	
��
���
�
�
��

�
�	
�

���
�
��
� �� � �� ��������

����

�� �����

�� �����

Fig. 2. Example of coding and ACK

Socket (MS), a standard socket created by an application.
It runs on a regular TCP and provides standard interfaces
between the application and the kernel for TCP connection.
If the peer does not support multipath TCP, only the main
socket will be created and executed. The second type entity is
Network Coding Subsocket and Regular Subsocket. Each
of them is also a standard TCP socket but running on a
network coding based TCP and a regular TCP respectively.
They provide interfaces between an NC-MPTCP controller
and the kernel for TCP connection. In order to be backward
compatible with the traditional TCP, only the main socket
is known to the application. These subsockets are initiated,
managed, and closed by the NC-MPTCP controller, which
is the third entity. NC-MPTCP Controller includes several
key control modules, such as scheduling module for allocating
data among different subflows, redundancy estimating module
for predicting how many redundant packets should be sent
out to compensate for the lost or delayed data, and encod-
ing/decoding modules for NC data.

In the following content of this section, we first introduce
some definitions mainly related to the network codign theory.
And then we briefly explain an example of sending and
acknowledgement (ACK) procedure of a single generation.

Definition 1 (Generation). A generation is a batch of segments
whose sequence numbers are continuous. Only the segments
from the same generation are encoded.

When we introduce network coding to TCP, each segment
is treated as a vector over a finite field Fn

q . A generation can
be treated as a matrix. We use r(G) to denote the rank of G,
such that r(G) = |G|. Throughout the paper, we use segment
and vector interchangeably.

Definition 2 (Decoding Matrix). When a sink receives vectors,
it constructs a matrix for each set of linear encoded segments
from the same generation. We define this matrix as a decoding
matrix. Let D denote a decoding matrix and let r(D) represent
its rank.

Each decoding matrix maps to a generation. A destination
uses decoding matrix transmission to decode the original
segments when it accumulates enough linearly independent
segments, i.e., r(D) ≥ r(G). In this paper, we do not
distinguish between matrix and generation.

As shown in Figure 2, the sender wants to send a generation
of segments through multiple subflows. We assume |G| = 4
and G = {s1, · · · , s4}, where sk is the kth segment that the

sender generates.
4∑

k=1

αksk is a linear coded segment calcu-

lated over G. We suppose the statistic loss probability of each
subflow is 1/3. We assume that three coded segments and three
original segments are sent out through NC subflow and regular
subflow respectively within the same time interval. We explain
each transmission by following the time line. r(D) = 1
because of the 1st transmission. The 2nd transmission is lost,
and the 3rd transmission causes r(D) = 2. When the 4th

transmission arrives, r(D) = 3. The 5th transmission is lost.
The 6th transmission increments r(D) to 4 which leads to
r(D)=r(G). Then, all the packets can be decoded and forwarded
up to the upper layer. Note that r(D) is carried in each ACK
packet to let the source know how many innovative segments
have arrived at the peer.

IV. ALGORITHM AND MODEL

The example shown in Figure 2 has two problems to solve:
1) How to coordinate the transmission of segments on different
subflows; 2) How to determine the number of redundant
segments sent through each subflow to guarantee the sink can
decode the generation. There is a correlation between these
two problems. In order to solve the latter, we should solve the
former first, i.e., finding an efficient scheduling algorithm to
allocate data among subflows. In this section, we will abstract
and formulate the packet scheduling algorithm and redundancy
estimation algorithm as well as some involved parameters.

A. Scheduling Algorithm

The scheduling algorithm allocates data among different
subflows. It aims to coordinate the data transmission among
all the subflows to optimize the overall goodput.

We use an intelligent packet selection strategy to choose
packets from the shared send buffer to individual subflows.

27
Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:55 UTC from IEEE Xplore. Restrictions apply.

Specifically, when the sender receives a new ACK and is
allowed to send extra packets over an individual subflow
according to the congestion window. The scheduling algorithm
picks a packet based on subflow condition parameters (end-
to-end delay, packet loss rate, and packet sending speed). We
use p and R to represent the estimated packet loss rate and
round trip time (RTT). Let MSS denote the minimum value of
the maximum segment sizes of all the subflows. We use the
following equation to estimate the transfer rate:

X ≈ MSS

R
√
p

(1)

We assume the sequence numbers of the first unsent packet
and the selected packet in the shared send buffer are Sf and
Ss respectively. pi and Ri represent the estimated packet loss
rate and round trip time (RTT) on the ith subflow. Then we
can get the following equation.

Ss = Sf +
∑

Rj>Ri

Xj ∗ (Rj −Ri)/2 (2)

We take (1) into (2), such that

Ss = Sf +
∑

Rj>Ri

MSS

Rj
√
pj

∗ (Rj −Ri)/2 (3)

B. Redundancy Estimation

Consider a generalized example of Figure 2. Let G denote a
generation, C be the set of coded segments calculated over G,
and D represent the corresponding decoding matrix. We use
pr and pn to represent the statistic packet loss probability on
regular subflows and NC subflows respectively. By using the
packet scheduling algorithm described in section IV-A, dif-
ferent subsockets can finish the transmission of the segments
from the same generation within the same time interval. The
NC subsockets deliver the set of C and the regular subsockets
deliver a subset of G. We use G′ to denote this subset, such
that G′ ⊆ G and |G′| ≤ |G|. Now the problem becomes
as how to determine the size of C and G′ to ensure that
the destination can decode the generation with the constraints
of the average packet loss probability pr and pn on regular
subflows and NC subflows respectively.

Theorem 1. The decoding matrix D can decode the original
segments of a generation G, only when the following two
conditions are satisfied.

|C|(1− pn) + |G′|(1− pr) ≥ |G| (4)

|C| ≥ |C|pn + |G′|pr (5)

Proof:
The first condition guarantees that the receiver is able to

receive enough number of segments to decode the original
generation. In order to avoid accidental rank reduction due to
a poor random choice of encoding coefficients, we assume
all the encoding coefficients are linearly independent; this

guarantees that each received segment is an innovative seg-
ment. This assumption is feasible because we could either use
fixed linearly independent coefficients or drop the coefficient
vector which is not linearly independent on the previously
generated ones. Thus, every received segment increases the
rank of D by one, such that we have r(D) = |D| =
|C|(1−pn)+ |G′|(1−pr). In order to decode G, the decoding
matrix D must have a rank no less than |G|, such that (4) must
be satisfied.

The second condition guarantees that the number of NC
segments is enough to compensate for the lost segments on all
subflows. The number of lost segments on regular subflows
and NC subflows can be estimated as |C|pn and |G′|pr
respectively, such that (5) must be satisfied.

|G′| and |C| are the numbers of segments sent through
regular subflows and NC subflows respectively for the same
generation within the same time interval. Thus, they can be
modeled as the TCP transfer rates on the sending side over
different subflows. Let Rn and Rr denote the average RTT on
NC subflows and regular subflows respectively. We still use
(1) to model the transfer rate, such that

|C|
|G′|

=
Rr

√
pr

Rn
√
pn

(6)

We take (6) into (4). Then, we get

|G′|
|G|

[
(1− pr) +

Rr
√
pr

Rn
√
pn

(1− pn)

]
≥ 1 (7)

Let r = Rr

Rn
. Then we have

|G′|
|G|

[
(1− pr) + r

√
pr√
pn

(1− pn)

]
≥ 1 (8)

Our objective is to get the minimum |G′| and |C| to satisfy
Equation (8) when pr and pn change within reasonable range.
We assume pr and pn change dynamically within the range of
(pmin

r , pmax
r) and (pmin

n , pmax
n) respectively. Then we get the

following theorem.

Theorem 2. Let c denote r(1−pmax
n)

2
√

pmin
r pmax

n

and g denote the

minimum value of |G′| which can satisfy Equation 4 and (5),
such that

g =

|G|

(1−pmin
r)+r

√
pmin
r√

pmax
n

(1−pmax
n)

if c ≥ 1

|G|

(1−pmin
r)+r

√
pmax
r√

pmax
n

(1−pmax
n)

if c < 1
(9)

Proof:
Due to the limited space, we ignore the mathematical proof

here.

When we get |G′| through Theorem 2, we can get |C| by
taking |G′| into Equation (6).

In this section, we use estimated packet loss probability
to calculate how many redundant vectors should be sent.

28
Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:55 UTC from IEEE Xplore. Restrictions apply.

In practice, it is infeasible to precisely predict the loss rate
because the losses are bursty. In our protocol, the knowledge
of the loss distribution is used to estimate the redundancy.
And the loss distribution is updated over time. However, it
is still possible that the actual loss rate is underestimated
in the algorithm, in which case the receiver cannot decode
the packets without retransmission. To avoid this problem, we
allow the ACK on fast subflows to carry the feedback of the
decoding matrix status to the sender. The sender is able to
decide whether to retransmit the lost packet or continue to
transmit the next unsent one. Thus, the performance achieved
by NC-MPTCP is no less than that of MPTCP.

C. Network Coding Subflow Selection

In this section, we give a guideline on how to choose the
NC subflows among the available ones. Consider the condition
in Equation (9) where c ≥ 1 can be satisfied at most cases
when r ≥ 1. For example, we assume pr ∈ (0.0001, 0.5)
and pn ∈ (0.0001, 0.5) which are the most common range of
packet loss rate in practice. When we take these two values
to c, we get r ≥ 0.03, i.e.,

Rr

Rn
≥ 0.03 (10)

Thus, the equation (10) is the determination condition to
select the NC subflow. However, this theoretical value does
not always work in practice due to the dynamic change of
the path properties. According to our simulation experience,
selecting the relatively fast subflow as a NC subflow is always
a better choice.

V. EVALUATION

In this section we evaluate NC-MPTCP and compare its
performance compared with that of TCP and MPTCP.

A. Implementation

We implemented the protocols using Network Simulator
NS-3 (version 3-10)1 and use a typical multipath transfer
topology having two disjoint paths between the source and
the destination. We fix the bandwidth of each path to 5 Mbps.
As the task for protocols MPTCP, TCP and NC-MPTCP, we
transmit a file of 21 MB from the source to the destination.
We use f1 and f2 to represent the two subflows respectively.

For every set of parameters we consider, we repeated the
measurements 100 times with global random seeds, and based
on received statistics we construct 95% percent confidence
intervals to guarantee the accuracy of the measurement.

B. Results

We first study the effect of packet loss rate on the goodput
of MPTCP and NC-MPTCP. The RTT of both subflows is set
to 120ms. f1 has a fixed packet loss rate of 0.01%, and the
receiving buffer size is set at 385KB which can accommodate
282 segments each of which has 1400 bytes. The packet
loss rate of f2 is varied between 0% and 10%. Figure 3

1http://www.nsnam.org

 0

 1

 2

 3

 4

 5

 0 0.02 0.04 0.06 0.08 0.1

A
v
e
ra

g
e
 g

o
o
d
p
u
t

(M
b
p
s
)

packet drop rate of subflow 2

TCP MPTCP NC-MPTCP

Fig. 3. Goodput comparison result with heterogeneous packet loss rate

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600

A
v
e
ra

g
e
 g

o
o
d
p
u
t

(M
b
p
s
)

RTT of subflow 2

TCP MPTCP NC-MPTCP

Fig. 4. Goodput comparison result with heterogeneous RTT (flow 1: 40ms)

shows the goodput of MPTCP and NC-MPTCP, as a function
of the packet loss rate of f2. On the plot we may observe
that when the loss rate of f2 grows, the goodput of MPTCP
decreases much more dramatically than that of NC-MPTCP.
In addition, we compare both of them against a regular TCP.
When subflows have very different network conditions, almost
immediately MPTCP starts to perform worse compared to
regular TCP, while NC-MPTCP remains higher performance
than regular TCP.

In the second test, we study the goodput difference of
MPTCP and NC-MPTCP by varying RTT deviation between
f1 and f2. The packet loss rate of both subflows is set to
0.5%. In this test we fix the RTT of f1 to 40ms. The RTT of
f2 is varied between 40ms and 640ms. Figure 4 shows the
results that, the goodput of MPTCP falls rapidly as the RTT of
f2 increases and again as in the previous example it achieves
even worse goodput compared to a regular TCP. NC-MPTCP
is able to work up to three times better than MPTCP.

The above result shows that the performance of MPTCP
degrades dramatically when the subflows have different net-
work quality. As we know that MPTCP uses a connection
level receive buffer as an aggregate buffer to accommodate
out-of-order segments from each subflow. In the context of
multipath transfer, the aggregate buffer has to be large enough
to accommodate all received segments until the lost or delayed
segments arrive. When the subflows have very different flow
quality in terms of bandwidth, RTT, and packet loss rate, the
required size of the aggregate buffer becomes too large to be
possible in practice.

29
Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:55 UTC from IEEE Xplore. Restrictions apply.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200000 300000 400000 500000 600000 700000

A
v
e
ra

g
e
 g

o
o
d
p
u
t

(M
b
p
s
)

Aggregate Buffer Size (Bytes)

MPTCP NC-MPTCP

Fig. 5. Goodput comparison result with different aggregate buffer size

In the third test, we study the impact of aggregate buffer
on goodput. The simulation parameters are: The RTT of both
subflows are set to 120ms, f1 and f2 have the fixed packet
loss rate of 0.1% and 4% respectively, the default subflow-level
receive buffer is set as 128K and the aggregate buffer size is
varied between 147KB (150000B) and 684KB (700000B).
The result of the test is shown in Figure 5, from which we get
that MPTCP requires larger aggregation buffer size in order
to achieve the stable goodput than NC-MPTCP. That is due to
the NC property that any linear combination received increase
the rank of matrix by one, and thus all missing gaps are very
fast being filled with redundant data.

C. Discussion

The evaluation results suggest that MPTCP and NC-MPTCP
behave very similarly when all subflows have similar network
conditions. In this case, both protocols gain advantages over
a regular TCP (one channel over the best subflow). However,
the situation starts to change whenever the discrepancy be-
tween subflows starts to grow. Our simulation shows that the
performance of MPTCP degrades much worse than that of
only one regular TCP. Whereas under the same situation, NC-
MPTCP behaves much better in terms of goodput. And in the
worst case, its performance is close to that of one regular
TCP. Another advantage is that the NC-MPTCP requires
smaller aggregation buffer in order to achieve stable goodput.
It reduces the physical requirements for the end terminals,
especially in case of hand-held devices.

However, the discussed advantages appear with trade of the
NC overhead in computations. End hosts have to perform
higher computations in order to encode/decode the data.
However, as we use network coding ideas only as end-to-
end communications, both peers can agree on some predefined
coding algorithms in such way that decoding becomes faster
and less CPU-intensive.

VI. CONCLUSION

In this paper we present the architecture and algorithms
of NC-MPTCP, a novel multipath TCP protocol. It utilizes
network coding to boost the overall goodput in case of highly
dissimilar subflow conditions. Together with designing and
modeling it, we evaluate the protocol in a NS-3 network sim-
ulator by comparing the performance of NC-MPTCP, MPTCP

and regular TCP. The result shows that NC-MPTCP is able to
outperform MPTCP under widely diverse subflow conditions
with limited aggregate buffer. And in the worst case, the
performance of NC-MPTCP is close to that of one regular
TCP.

Looking to the future, it would be useful to study a more
sophisticated scheduler, one which can gain more goodput
using a slow (in the sense of RTT) but reliable supplementary
channel, in which network coding takes place. In addition, it is
important to have practical implementation in order to compute
the NC CPU overheads. Finally, some very sophisticated
scenarios, in which a mixture of subflow conditions are met,
should be discussed.

VII. ACKNOWLEDGEMENT

This work was supported in part by the Academy of
Finland (no. 135230), NSFC (60911130511, 60873252) and
973 Program of China (2009CB320501, 2009CB320503).

REFERENCES

[1] S. Barré, C. Paasch, and O. Bonaventure. MultiPath TCP: From Theory
to Practice. In proc. of the 10th international IFIP TC 6 conference on
Networking - Volume Part I, pages 444–457, 2011.

[2] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural
Guidelines for Multipath TCP Development. RFC 6182, Internet
Engineering Task Force, Mar. 2011.

[3] H. Hsieh and R. Sivakumar. pTCP: An end-to-end transport layer pro-
tocol for striped connections. In In proc. of the 10th IEEE International
Conference on Network Protocols, pages 24–33, 2002.

[4] H.-Y. Hsieh and R. Sivakumar. A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts. Wireless Networks,
11:99–114, January 2005.

[5] Y. Huang, M. Ghaderi, D. Towsley, and W. Gong. TCP performance in
coded wireless mesh networks. In In Proc. of Sensor, Mesh and Ad Hoc
Communications and Networks., pages 179–187. IEEE, 2008.

[6] J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer
Using SCTP Multihoming Over Independent End-to-End Paths. In
IEEE/ACM Transactions on Networking, 14(5):951 –964, October 2006.

[7] J. Liao, J. Wang, and X. Zhu. cmpSCTP: An Extension of SCTP to
Support Concurrent Multi-Path Transfer. In Proc. of IEEE International
Conference on Communications, pages 5762 –5766, May 2008.

[8] J. Liu, H. Zou, J. Dou, and Y. Gao. Rethinking Retransmission Policy
In Concurrent Multipath Transfer. In Proc. of Intelligent Information
Hiding and Multimedia Signal Processing, pages 1005 –1008, aug. 2008.

[9] R. Moskowitz, P. Nikander, E. P. Jokela, and T. Henderson. Host Identity
Protocol. RFC 5201, Internet Engineering Task Force, Apr. 2008.

[10] S. C. Nguyen, X. Zhang, T. M. T. Nguyen, and G. Pujolle. Evaluation
of throughput optimization and load sharing of multipath TCP in het-
erogeneous networks. In Proc. of Wireless and Optical Communications
Networks (WOCN), pages 1 –5, may 2011.

[11] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim
Protocol for IPv6. RFC 5533, Internet Engineering Task Force, June
2009.

[12] V. Sharma, S. Kalyanaraman, K. Kar, K. Ramakrishnan, and V. Sub-
ramanian. MPLOT: A transport protocol exploiting multipath diversity
using erasure codes. In Proc. of INFOCOM, pages 121–125, 2008.

[13] R. Stewart. Stream control transmission protocol. IETF RFC 4960, Sep.
2007.

[14] J. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J. Barros.
Network Coding Meets TCP. In Proc. of INFOCOM, pages 280 –288,
April 2009.

[15] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multipath TCP.
In Proc. of Usenix NSDI, 2011.

[16] X. Zhuoqun, C. Zhigang, Y. Hui, and Z. Ming. An improved MPTCP
in coded wireless mesh networks. In Proc. of Broadband Network &
Multimedia Technology, pages 795–799. IEEE, 2009.

30
Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:55 UTC from IEEE Xplore. Restrictions apply.

